SUGGESTED SOLUTION TO HOMEWORK 4

JUNHAO ZHANG

Problem 1. Let $x=\sum_{k=1}^{\infty} x_{k} e_{k}$ be the expansion of a vector x with respect to a Schauder basis $\left(e_{n}\right)$ in a normed space X. Show that for every $k \in \mathbb{N}$, the mapping $x \mapsto x_{k}$ is a linear functional on X.

Proof. Denote

$$
e_{k}^{\prime}(x):=x_{k}
$$

then e_{k}^{\prime} is a mapping from X to \mathbb{K}. It suffices to prove that e_{k}^{\prime} is linear. Let $\alpha, \beta \in \mathbb{K}, x, y \in X$, then

$$
e_{k}^{\prime}(\alpha x+\beta y)=\alpha e_{k}^{\prime}(x)+\beta e_{k}^{\prime}(y)=\alpha x_{k}+\beta y_{k}=e_{k}^{\prime}(\alpha x+\beta y),
$$

which implies that e_{k}^{\prime} is linear.
Problem 2. Show that if a normed space has n linearly independent vectors, then so does its dual space.

Proof. Let $\left\{x^{1}, \cdots, x^{n}\right\}$ be the n linearly independent vectors in the normed space X. Consider $Y=\operatorname{span}\left\{x^{1}, \cdots, x^{n}\right\}$, then Y is a subspace of X. For each $k \in \mathbb{N}$ and $1 \leq k \leq n$, define the following linear functional on Y,

$$
f_{k}(x)=x_{k}
$$

where $x=\sum_{i=1}^{n} x_{i} x^{i}$. We claim that f_{k} is a bounded linear function in Y^{*}.
Let us prove that there exists a real number $c>0$ such that

$$
c \sum_{i=1}^{n}\left|x_{k}\right| \leq\|x\|,
$$

for all $x \in Y$. Indeed, it is clear that the results holds for $x=0$. For $x \neq 0$, moreover, it suffices to prove that there exists a real number c such that

$$
\|x\| \geq c>0
$$

for all $\sum_{i=1}^{n}\left|x_{i}\right|=1$. Consider the set

$$
S:=\left\{\left(x_{1}, \cdots, x_{n}\right): \sum_{i=1}^{n}\left|x_{i}\right|=1\right\},
$$

then S is closed and bounded in \mathbb{R}^{2}. Therefore by the Bolzano-Weierstrass theorem, S is compact. Define the following function on S,

$$
f\left(x_{1}, \cdots, x_{n}\right):=\|x\|,
$$

where $x=\sum_{i=1}^{n} x_{i} x^{i}$. Then f is continuous. Moreover, since S is compact, therefore f attains its minimum on the compact set S, i.e. there exists $\left(x_{1}^{\prime}, \cdots x_{n}^{\prime}\right) \in S$ such that

$$
f\left(x_{1}, \cdots, x_{n}\right) \geq f\left(x_{1}^{\prime}, \cdots, x_{n}^{\prime}\right) \geq 0
$$

for all $\left(x_{1}, \cdots, x_{n}\right) \in S$. Denote $c:=f\left(x_{1}^{\prime}, \cdots, x_{n}^{\prime}\right)$, we claim that $c>0$. Otherwise, $c=0$ implies that

$$
\sum_{i=1}^{n} x_{i}^{\prime} x^{i}=0
$$

then since $\left\{x^{1}, \cdots, x^{n}\right\}$ are linearly independent, therefore

$$
x_{i}^{\prime}=0,
$$

for all $1 \leq i \leq n$, which contradicts to $\left(x_{1}^{\prime}, \cdots, x_{n}^{\prime}\right) \in S$.
Therefore for arbitrary $x \in Y$, we have

$$
\left|f_{k}(x)\right|=\left|x_{k}\right| \leq \frac{1}{c}\|x\|,
$$

which implies that $f_{k} \in Y^{*}$. Therefore by the Hahn-Banach theorem, there exists an extension $\tilde{f}_{k} \in X^{*}$ of f_{k} such that

$$
\left.\tilde{f}_{k}\right|_{Y}=f_{k},
$$

and

$$
\left\|\tilde{f}_{k}\right\|=\left\|f_{k}\right\|
$$

We claim that $\tilde{f}_{1}, \cdots, \tilde{f}_{n}$ are linearly independent. Indeed, suppose there exists $\lambda_{1}, \cdots, \lambda_{n}$ such that

$$
\sum_{i=1}^{n} \lambda_{i} \tilde{f}_{i}=0
$$

then for each k,

$$
\sum_{i=1}^{n} \lambda_{i} \tilde{f}_{i}\left(x^{k}\right)=0
$$

which implies

$$
\lambda_{k}=0,
$$

therefore $\lambda_{1}=\cdots=\lambda_{n}$, which implies that $\tilde{f}_{1}, \cdots, \tilde{f}_{n}$ are linear independent.

